

N-Channel 40V MOSFET

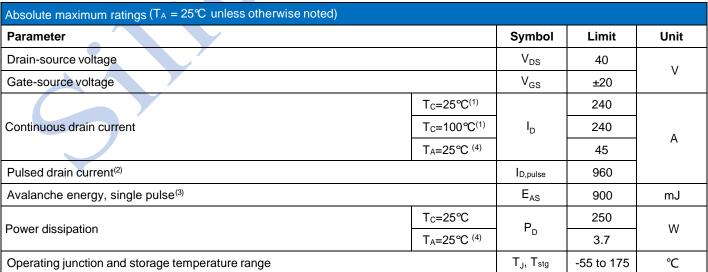
Product summary

V _{DS} (V)	$R_{DS(on),max} \; (m\Omega)$	I _D (A)	
40	1.1 @ V _{GS} = 10V	240 ⁽¹⁾	

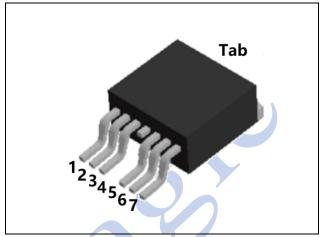
Features

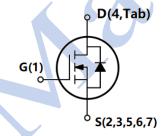
- For automotive applications and AEC-Q101 qualified
- Low R_{DS(on)} trench technology
- Fast switching speed
- 100% avalanche tested

Applications

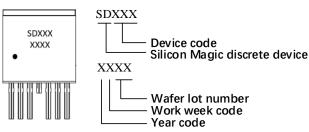

- DC/DC conversion
- Power switch
- Motor drives

"SILICON MAGIC" is registered trademark of Silicon-Magic Semiconductor Technology Co.,Ltd.


Package and ordering information


Ordering code	Package	Device code
SDH04N0P9S1F	TO263-7L	ADN

Maximum ratings



TO263-7L

2. Thermal resistance ratings

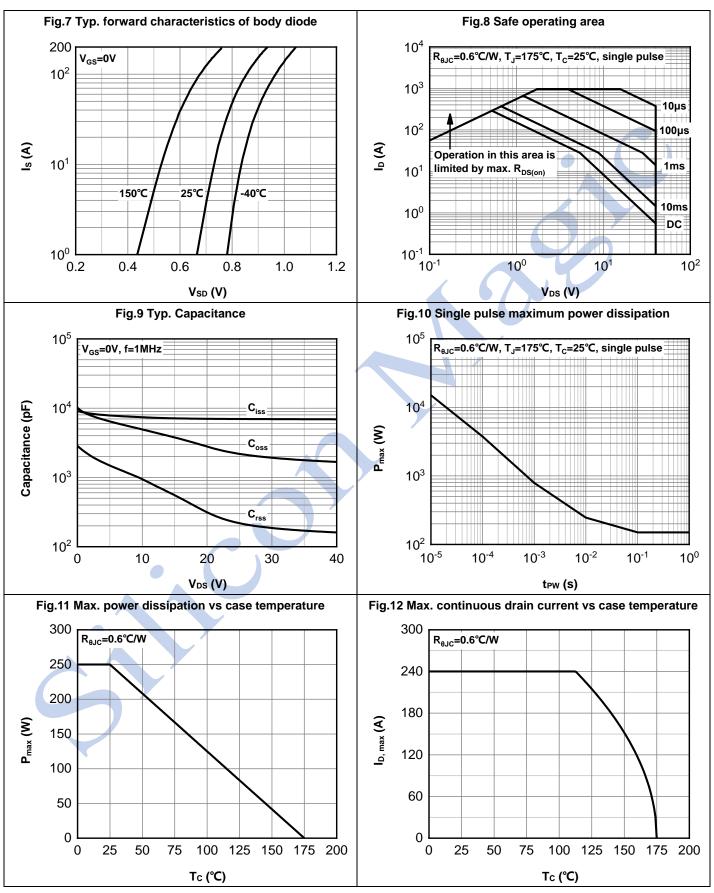
Thermal resistance ratings					
Parameter	Symbol	Max.	Unit		
Thermal resistance, junction-to-case	Steady state	Rejc	0.6	90/11	
Thermal resistance, junction-to-ambient (4)	Steady state	Reja	40	°C/W	

3. Electrical Characteristics

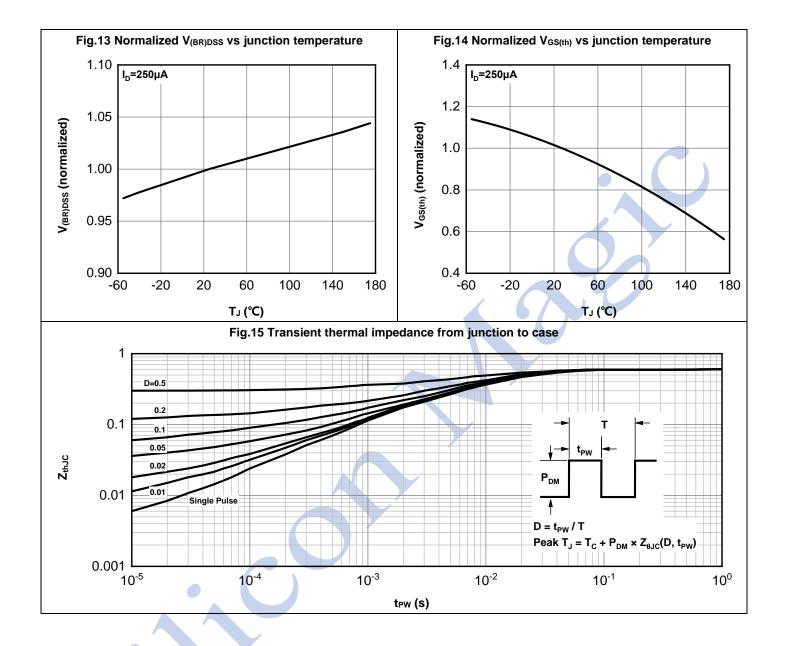
Electrical characteristics (TJ = 25℃ unless otherwise noted)							
Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Static parameter							
Drain to source breakdown voltage	V _{(BR)DSS}	$V_{GS} = 0$, $I_D = 250 \mu A$	40			V	
Gate-source threshold voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.6	3.4	4.2	V	
Gate-body leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 40 V, V _{GS} = 0 V			1	μΑ	
Drain-source on-resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 90 A		0.9	1.1	mΩ	
Forward transconductance (5)	g _{fs}	V _{DS} = 5 V, I _D = 90 A		258		S	
Gate resistance	Rg	f = 1 MHz		2		Ω	
Dynamic ⁽⁵⁾							
Total gate charge	Q_g	Y		117			
Gate-source charge	Q_{gs}	$V_{DS} = 20 \text{ V}, I_{D} = 180 \text{ A}, V_{GS} = 10 \text{ V}$		36		nC	
Gate-drain charge	Q_{gd}			41			
Turn-on delay time	t _{d(on)}			50			
Rise time	tr	$V_{DS} = 20 \text{ V}, I_D = 90 \text{ A}, V_{GS} = 10 \text{ V},$		76			
Turn-off delay time	t _{d(off)}	$R_{GEN} = 6 \Omega$		130		ns	
Fall time	tf			47			
Input capacitance	C _{iss}			6970			
Output capacitance	C _{oss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		2170		pF	
Reverse transfer capacitance	C _{rss}			218			
Reverse Diode Characteristics (5)							
Diode forward voltage	V _{SD}	V _{GS} = 0 V, I _F = 90 A		0.9	1.1	V	
Reverse recovery time	t _{rr}	V 20 V I 400 A di/dt 400 A/		72		ns	
Reverse recovery charge	Q _{rr}	$V_{DS} = 20 \text{ V}, I_F = 180 \text{ A}, di/dt = 100 \text{ A}/\mu\text{s}$		170		nC	

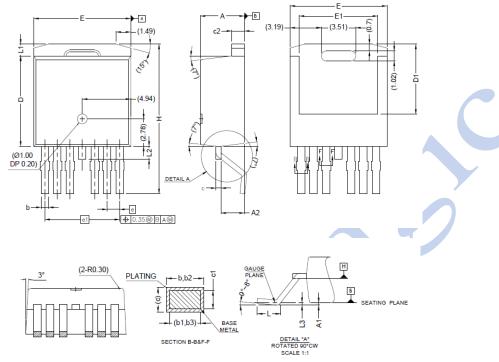

Notes

- (1) Package limited.
- (2) Pulse width limited by maximum junction temperature.
- (3) $V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, L = 0.3 \text{ mH}.$
- (4) Reja is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5x1.5 in. board of FR-4 material.
- (5) Guaranteed by design, not subject to production testing.



4. Electrical characteristics diagrams





5. Package outline dimensions

CVMADOLC	DIMENSIONS IN MILLMETERS			
SYMBOLS	MIN	NOM	MAX.	
А	4.30	-	4.70	
A1	1	-	0.25	
A2	2.20	-	2.60	
b	0.65	ı	0.85	
b1	0.65	ı	0.80	
b2	0.80	ı	1.00	
b3	0.80	ı	0.95	
С	0.45	ı	0.60	
c1	0.45	ı	0.55	
c2	1.25	-	1.40	
D	9.00	ı	9.40	
D1	6.86	ı	7.42	
Е	9.68	-	10.08	
E1	7.70	-	8.30	
е	1.27 BSC			
e1	7.62 BSC			
L	1.78	=	2.79	
L1	=	=	1.60	
L2	=	=	1.78	
L3	0.25 BSC			
Н	14.61	-	15.88	

Legal Disclaimer

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Silicon Magic Technologies reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Silicon Magic Technologies or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Silicon Magic Technologies in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Silicon Magic Technologies or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. In addition, any recipient of this document and the relevant products samples may not alter, decompile, disassemble, reverse engineer, or otherwise modify any information/samples received hereunder. Any intellectual property rights arising from the reverse engineering of Silicon Magic's products shall belong to Silicon Magic.

